
Learning to Play a Customized Overhead-shooting
Game

Haoming Hu
CS Department, Viterbi

University of Southern California
Los Angeles, CA

haomingh@usc.edu

Haoqin Deng
ECE Department, Viterbi

University of Southern California
Los Angeles, CA
haoqinde@usc.edu

Haoyun Zhu
CS Department, Viterbi

University of Southern California
Los Angeles, CA

haoyunzh@usc.edu

Lihan Zhu
CS Department, Viterbi

University of Southern California
Los Angeles, CA
lihanzhu@usc.edu

Abstract—We developed a customized overhead-shooting game
and trained our Artificial Intelligent (AI) agent to play it. For the
simpler game environments, we applied several vanilla machine
learning algorithms and compared their performances, including
Genetic Algorithm (GA), Deep Q learning (DQN), Double Deep Q
Learning (DDQN), Dueling DDQN, Deep Recurrent Q Learning
(DRQN), Actor-Critic, and Proximal Policy Optimization (PPO).
For more complex game environments, we modified DQN to take
vector inputs instead of screenshots. We used YOLO-v3 to extract
object positions from images. In addition, we applied pre-training
technique to boost convergence speed. At the end, our AI agents
were able to develop reasonable gaming strategies and achieve
high score on our customized game environment.

Index Terms—Customized Overhead-shooting, GA, DQN,
DDQN, Dueling DDQN, DQRN, Actor-Critic, PPO, Vector In-
puts, YOLO-v3, Pre-training

I. INTRODUCTION

Overhead-shooting game is one of the most popular types
of video games. In a typical overhead-shooting game, players
usually control an agent to move, attack or perform other
operations against a computer or real opponents. Taking down
enemies while keeping the player’s agents safe is the primary
goal of the game. Players will become more challenged and
attracted by the game if their enemies are highly intelligent.

Recently, researches on artificial intelligence applications in
video games have attracted increasing attentions. Google’s A.I.
program, AlphaGo, defeated the world’s best player Lee Sedol
and caused a sensation throughout the world. To date, there
have been a lot of researches on how to make an intelligent
agent in 2D games. Genetic Algorithms [2] borrows the idea
from natural selection and performs well on simple games
such as Flappy Bird. However, it suffers from the problem
of high training cost and is susceptible to getting stuck in
local-minimum. Q-learning is a version of temporal difference
algorithm. It keeps a Q table to register the desirability of
state-action pairs. However, Q-learning is unscalable for more
complicated game environments because it requires storing a
colossal size of Q table. Deep Q Learning [6] resolves this

issue by replacing the Q table with a Q network. Furthermore,
a number of variants of DQN were proposed later, including
Deep Recurrent Q network [4], double DQN [11] and dueling
DQN [12]. Apart from these value-based algorithms, there are
also policy-based algorithms, such as the Actor-critic model
[5] and its variant PPO algorithm [9]. More complicated
game environments demand more powerful techniques, such
as pre-training methods [1]. They can boost a model’s ability
to converge in the initial stage of training. Object detection
algorithms, such as Fast RCNN [3] and the YOLO family [7],
[8] can be used to extract object positions from images. These
state-of-the-art algorithms have been demonstrated to achieve
high scores on Atari games wrapped in the Open AI Gym
library. Since our overhead-shooting game scenes resemble
those of Atari games, the aforementioned machine learning
algorithms are presumed to be suitable.

On the other hand, little research has been conducted in
comprehensively evaluating the best strategies in a customized
2D overhead-shooting game. In this work, we fill this gap by
investigating the performances of various mainstream models
in our self-designed 2D overhead-shooting game. Our contri-
bution is two-fold: 1) design and develop a highly extensible
2D overhead-shooting game environment that is compatible
with open AI gym environment and mainstream Python mod-
els. 2) implement various mainstream ML algorithms, compare
and analyze their performances in our specific environment.

By incorporating intelligent AI with overhead-shooting
games, we are able to bring entertainment to a new level—
players will enjoy great fun when they battle smart AI enemies.
This will be a bonus feature of a game and will potentially
attract more players.

The rest of the paper is organized as follows. Section II
introduces the background information of the machine learning
models we used to train our agents. Section III introduces the
data set for training and the features of the game environment.
Section IV describes in details how we implemented the afore-
mentioned machine learning algorithms to train AI agents to

play our customized game. Section V reports the performances
of the models on different versions of our customized game.
Section VI discusses the interpretation of our results. Section
VII concludes our whole project. Section VIII discusses future
work.

II. BACKGROUNDS

A. Deep Q Learning

The Q-learning algorithm assigns a value Q(A,S) to an
action-state pair. A higher Q value indicates that the action at
that state is expected to yield a higher return. The Q-learning
algorithm iteratively updates the Q value using the temporal
difference method:

Q(s, a) = Q(s, a) + α(r + γmax
a′

Q(s′, a′)−Q(s, a)) (1)

where Q(s′, a′) is the Q value of the action a′ in the next
state s′, r is the reward given by the environment, γ is the
diminishing return coefficient, and α is the learning rate.

Q table can be updated in some simple environments.
However, when the environment is complicated, the number
of states will be too large to be stored in the Q table. Hence, a
neural network, parameterized by (θs), is used to approximate
the Q table. Here, the Q network is iteratively updated with
the temporal difference method to minimizes the loss function:

Q∗(st, at) = r + γmax
a′

Q(st + 1, a′) (2)

L(s, a|θi) = (Q∗(st, at)−Q(st, at))
2 (3)

θi+1 = θi + α∇θL(θi) (4)

The agent starts off by being exploratory and gradually be-
comes greedy in selecting actions. Its experiences are stored
in the memory buffer and fed into the Q network to update
(θs). In the end, the Q network will accurately evaluate the
desirability of an action given a state input.

B. Double Deep Q Learning

The DQN method uses the same Q network to both select
and estimate Q values. Such an estimating from the estimation
approach tends to maximize the bias, creating the overesti-
mation problem. The DDQN method introduces a second Q’
network to untangle the selection from evaluation. The target
Q value is calculated as follows:

Q∗(st, at) = rt + γQ(st + 1,max
a′

Q′(st+1, a
′)) (5)

The loss function and its minimization are the same as
DQN. The parameters θ’s of Q’ network are periodically
updated by copying θs of the Q network:

θ′ = τ ∗ θ + (1− τ) ∗ θ′ (6)

C. Dueling Double Deep Q Learning

Sometimes edge states may not be important. The dueling
architecture takes this into account by designing an advantage
function A that subtracts the state value V π(s) from the action
value Qπ(s, a). The DQN network is split into two streams to

compute the action and the state value. The target Q value is
computed using the following equation:

Q(s, a; θ, α, β) =

V (s; θ, β) + (A(s, a; θ, α)−maxA(s, a; θ, α))

a′ ∈ |A| (7)

D. Deep Recurrent Q Learning

The original DQN method takes four channels of con-
secutive frames as inputs in order to capture the temporal
information such as movement. However, this method per-
forms poorly in the partially observable environment [4]. In
our game, partial observation means the possible presence of
frame flickering, which hides some information of a state.
Recurrent Neural Network (RNN) and one of its versions,
Long-Short Term Memory (LSTM), inherently capture tem-
poral information and are shown to be resistant to the frame
flickering problem [4]. DRQN replaces the linear layer in DQN
with an LSTM layer. Instead of taking four frames as input,
DRQN unrolls them into multiple time steps and processes
one frame each step. There are two ways of sampling from
memory buffer: (1) randomly sampling an entire episode or
(2) randomly sampling a sub-sequence of the entire episode.
We implemented the latter approach.

E. Genetic Algorithm

GA simulates the mechanism of natural selection where the
fittest survives in a highly random process of evolution. The
advantage of the algorithm is its elegant simplicity compared
to other theoretical methods. Also, it endures a relatively
high amount of noise in the samples because it treats the
population as a whole and performs multiple parallel learning
procedures at the same time. Combined with the mechanisms
of “ranking selection” (which keeps only two best results
from one generation), GA combs out alienated results and
selects the most suitable ones to the current environment. As a
result, GA iterates by generations and evolves towards a local
minimum at a high speed. Another main strength of GA is that
it demands a much lower threshold for problem definition and
environmental inputs. This works well especially when inputs
vary in a wide spectrum and strategies are not unique or clear
to the goal.

However, the highly stochastic procedure limits the ability
for agents to get out of local minimum. The algorithm does
not guarantee a final convergence and is likely to swing
back and forth in the midway, taking up huge computational
resources but giving out few constructive results. Thus, the
unpredictability of the learning progress is another weakness.
It could be wandering at some low point one moment and
pops out a historical best result the other moment because
of a tiny mutation, vice versa. The mercurial results prevent
researchers from terminating the training process immediately
when it slips into an apparently unreasonable result.

Page 2 of 8

F. Actor-Critic

Actor-critic algorithm is the combination of value-based and
policy-based algorithms. The model consists of two networks:
an actor choosing action based on current game state and a
critic calculating the Q value of the actor’s action. The actor
learns with policy gradient while the critic learns by using the
temporal difference method.

The actor and the critic networks share a large part of a
neural network. Both of them need several convolution layers
to extract features from input images and one or two fully
connected layers. The only difference is the final output layer,
in which the actor network has an output size equal to the
number of actions while the critic network has an output size
of one (Q value).

The loss of actor-critic networks has two parts as well. The
first part is policy loss, computed by policy gradient. The
second part is value loss, computed by the temporal difference
method. The pseudo algorithm of actor critic is shown in
Algorithm 1.

Algorithm 1 Pseudo-code: Actor-critic algorithm

while in each step of training do
Observe the state.
Randomly sample action according to π(·|st; θt).
Perform at and observe new state st+1 and reward rt.
Update value network Nvalue with temporal difference

(TD).
Update policy network Npolicy with policy gradient.

end while

G. Proximal Policy Optimization

Proximal Policy Optimization is an improvement of the
policy gradient descent algorithm.

Compared against previous models, PPO algorithm makes
effective use of data and adopts the method of importance
sampling. The sampled data can be used in several iterations
in PPO while the same data need to be discarded after only one
iteration in vanilla policy gradient. It improves the efficiency of
using data and accelerates the training of the model. What’s
more, PPO can achieve satisfactory results on many classic
reinforcement learning tasks.

PPO uses clipped a surrogate objective to penalize large
policy updates:

LCLIP (θ) = Et[min(rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)]
(8)

H. Pre-training

Reinforcement learning often suffers from unstable conver-
gence. Pre-training methods are therefore developed to address
this issue. In the work of [1], both the model transfer and the
experience transfer are utilized.

A pre-training data set is generated by letting a non-
expert human player to play the game for a large number
of episodes. From this data set, supervised training is used to

find the optimal mapping between stacked-frame image inputs
and corresponding actions. The network used in supervised
training has the same topology as the Q network in the DQN
algorithm. The weights of the trained network will be used
to initialize the weights of the Q network in the actual DQN
training.

All the state transitions occurring during human-play
episodes are used to fill the initially-empty memory buffer. In
addition, the initial exploration rate is lowered because human
players already finish the exploration process.

I. YOLO

YOLO (You Only Look Once) is an object detection algo-
rithm that can efficiently extract object positions from image
inputs. To date, there are five versions of YOLO. YOLO v3
is used in this paper [8].

In YOLO v3, images first go through deep convolutional
layers for feature extraction. The outputs are divided into
three different sizes of grids to accommodate size variation
of objects. To stabilize the initial stage of training, anchor
boxes are pre-computed with k-means clustering method.
Object positions are represented by vectors of normalized
relative positions between bounding boxes and anchor boxes.
The difference between the predicted object positions and
the ground truth is computed as the loss function and gets
iteratively minimized.

III. DATA AND ENVIRONMENT

A. Setup

We run all experiments on the Nvidia Tesla K80 GPU, n1-
standard-4 CPU, in Ubuntu 16.04 on Google Cloud Platform
(GCP).

B. Game Environment

The game is developed using PyGame. Figure 1 shows
the conceptual design of the game. There are three versions
of the game (Env v1.0, Env v2.0, Env v3.0), where higher
version number represents increasing complexities. Table I
summarizes their differences. The game has a 2D overhead
bird view. There are pre-scripted enemies and AI players that
can shoot, move, or do nothing. The goal of the game is to hit
as high scores as possible. Generally, the player is rewarded
when it hits an enemy or collects desirable objects (treasures,
health packs); the player is punished when it is hit by bullets
or run into undesirable objects(traps). Note that the game can
be easily extended to incorporate more complicated features.

The game is wrapped to inherit the Environment class in
Open AI gym, so that it can directly interface with ML algo-
rithms written in python. Table II summarizes the important
functionalities:

C. Data Set

1) Reinforcement Learning: As the agent plays more
games, it stores experienced information in its memory
buffer that contains tuples of (observation, reward, done,
next observation, action). Observations are screenshots from

Page 3 of 8

Figure 1: Scenes of our overhead-shooting game environments

Version Action space Features

Env v1.0 {NOOP, LEFT,
RIGHT, FIRE}

One enemy, consecutive shoot-
ing enabled

Env v2.0 {NOOP, LEFT,
RIGHT, FIRE}

Two enemies, consecutive
shooting disabled

Env v3.0
{NOOP, LEFT,
RIGHT, FIRE,
UP, DOWN}

Two enemies, consecutive
shooting disabled, treasures

Table I: Summary of game environments

the game, and each piece of data is a 600 by 600 pixel
RGB image. The information inside the memory buffer is our
training data.

In Env v3.0, we applied the pre-training method. In this
case, all information in the memory buffer are experiences of
a human player instead of an AI agent.

2) Object Detection: We let the agent play the game for
3000 frames and stored one screenshot every ten frames
to increase the dissimilarities of the sampled images. The
sampled 300 images are all labeled automatically such that
each image is correctly associated with a list of positions of all
objects, including the enemy spaceship, the player spaceship,
bullets, and treasures.

IV. METHODS

A. Overall Architecture

Figure 2 shows the overall architecture of the project. Pre-
training is used to initialize network weights. YOLO v3 is used
to extract object positions. CNN layers are used for extracting
features of input images. An LSTM layer is used to retain past
information and resolve the frame-skipping issue. All modules
are weaved together into the temporal-difference architecture
that covers a wide range of reinforcement learning algorithms
that include DQN and PPO.

B. Env v1.0

1) Genetic Algorithm (GA): The overall workflow of our
genetic algorithm is shown in Figure 3. All the training
parameters are set as follows:

(i) Population size: 20.
(ii) Mutation rate: 0.2 - 0.1 decreasing throughout the whole

process.
(iii) Mutation portion: 0.01, meaning 1% of a model would

be modified when it mutates.

Action Space {NOOP, LEFT, RIGHT, FIRE}
Observation
Space

screenshot of frames: (600, 600, 3) NumPy
array

Reward

1) Hitting enemies: +10
2) Being hit by enemies: -10
3) Time passage: -0.005
4) Collect treasures: +10

Terminal condi-
tion

1) All enemies’ health ≤ 0
2) AI’s health insurance ≤ 0
3) Steps ≥ 3000

Score Sum of reward

Table II: Parameters

Figure 2: Project architecture

(iv) Mutation scale: -10 - 10.
(v) Crossover rate: 0.8, meaning that 8 out of 10 times,

two parent models selected in each generation would
exchange part of their weight vector to their off-springs.

(vi) An individual agent bases on a Recurrent Neural Network
(RNN) as shown in figure below.

(vii) 500 maximum generations. Any results achieved over
500 repetitions would be meaningless for the low rate
of return.

2) DQN, DDQN, Dueling DQN: The three methods share
the same deep Q network topology, as shown in Figure 4.a.
The only difference between the three models are how their
loss functions are calculated, which is describe in Section II
and implemented accordingly.

3) Pre-processing: Observations are screenshots from the
game, which are 600 by 600 pixel RGB images. The raw
screenshot images are down-sampled and gray-scaled to 84
by 84 single-channel images. This compression of input data
can boost training speed. At each time step, four most recent,
consecutive frames of screenshots are stacked together to
capture the temporal information such as velocity. As a result,
the final input data after pre-processing have a shape of (84,
84, 4).

All the relevant parameters are summarized in Table III.

Page 4 of 8

Figure 3: Genetic algorithm workflow

Figure 4: a). Network topology of DQN, DDQN, Dueling
DQN. b). Network topology of DRQN

C. Env v1.1

Env v1.1 adds the frame skipping feature to Env v1.0. Here,
one frame is skipped every eight frames.

1) DRQN, LSTM: We implemented a DRQN (deep re-
current Q network) by replacing the first linear layer of
deep Q network with an LSTM layer, as shown in Figure
4.b. Incorporation of a recurrent layer (LSTM) brings two
advantages: (1) An LSTM layer has the ability to retain past
information. In theory it can be resilient to the frame-skipping
issue because other past information can be retained to make
up for the information loss of a skipped frame. (2) DRQN
has faster inference speed because only a single frame, as
opposed to stacked four frames, is used as the input of the
neural network.

We applied both DQN and DRQN on the frame-skipping
game environment and compared their performances.

D. Env v2.0

As described in section III-B , Env v2.0 presents a more
difficult task since more enemies are present and the player
cannot fire consecutively. We applied the same DQN model
as we did in Env v1.0 to train the agent. We also used guided

Parameter Value
Inputs (84, 84, 4)
Outputs actions
Number of episodes 2000 - 3000
Network architecture Conv*3 → linear*2
Replay buffer size 30000
Rate of diminishing return 0.99
Epsilon delay 0.01
Batch size 32

Table III: Summary of Training parameters

grad-CAM [10] algorithm to plot the heat map of the neural
network.

E. Env v3.0

In this more complicated environment, the player has a
larger action space as it can move up/down in addition to
left/right.There are also more objects, which are treasures, that
give the player additional rewards if collected. In this environ-
ment, we applied DQN-vector and pre-training in addition to
the original DQN model.

1) DQN: The DQN model we used is the almost the same
as the DQN model we used in Env v1.0 and Env v2.0, except
that there are two more neurons in the output layer, which
corresponds to the larger action space due to the additional
UP/DOWN movements.

2) DQN-vector: In this model, instead of taking screenshot
images as inputs, we put relevant information in a vector in
order to capture the game state more accurately. The vector
includes normalized coordinates of players, enemies, bullets,
and treasures. The vector has a fixed size of 36, and empty
objects are padded with (-1, -1). As before, to capture temporal
information, we concatenated the four most recent vectors
to represent the current state. Consequently, the state of the
game is represented by a 1D vector of length 36*4. All the
convolutional layers in the original DQN is replaced by one
linear layer of shape (36*4, 512).

3) Pre-training: We let human players play the game for
10000 frames, and stored all the state transition information
locally. It is used to initialize agents’ memory buffer. We also
applied supervised training on a neural network, which has
the same topology as the deep Q network, to find the optimal
mapping between states (inputs) and actions (classification)
through a cross-entropy loss function. The trained weights will
be used to initialize the weights of the deep Q network. We
set the initial exploration rate ϵ to 0.1.

All other parameters are the same as the original DQN.

F. YOLO v3

YOLO v3 is used in our project mainly for pre-processing
screenshots of states. It is used to extract position information
from a image.

We used the baseline YOLO v3 implementation from [8].
It is applied on self-generated data set, described in section
III-C. We trained for 96 epochs, until loss can no longer be
decreased. The batch size is set to be 4.

Page 5 of 8

G. Evaluation metrics

The performances of models are measure by two metrics:

1) Scores:

scores =

n∑
i=1

rewardi(n is the end of game)

(9)

The model is evaluated by the summation of agent’s
reward scores.

2) Convergence speed:
The model that can obtain similar performance through
fewer training iterations should be considered better due
to limited computational resources. Often, reinforcement
learning requires enormous amounts of computational re-
sources because agents need a lot of interactive feedback
with the environment to learn.

V. RESULTS AND ANALYSIS

A. Env v1.0

1) Genetic Algorithm: Figure 5 shows the performance
of Genetic Algorithm. We see that after a significant score
increment in first 200 generations, the model stops improving
and oscillates around 50 points. Note that the full score is 100
points.

Figure 5: The training curve of Genetic Algorithm

2) DQN, DDQN, Dueling DQN, DRQN: Figure 6 shows
the performances of the DQN model and its variants, DDQN,
Dueling DDQN, DRQN. We see that the DQN and DRQN
agents are able to achieve close to full score, 100 points.
DDQN also approaches full score but oscillates more. Dueling
DDQN does not converge.

3) PPO: Figure 7 shows the performance of the PPO
model. It intensively oscillates around 0 and does not show
significant improvement beyond this point.

4) LSTM, frame-skipping: Figure 8 shows the performances
of DQN and DRQN on Env v1.1, the frame-skipping environ-
ment. It can be observed that the DQN model collapsed due to
the loss of information. On the other hand, the DRQN model
only experiences a slight drop in scores. This experiment
confirmed our hypothesis that the usage of LSTM layer can
indeed preserve past information and is more resilient to loss
of frames.

Figure 6: a). The training curve of DQN. b). The training curve
of DDQN. c). The training curve of Dueling DDQN. d). The
training curve of DRQN

Figure 7: The training curve of the PPO model

B. Env v2.0

Figure 9.a shows the performance of DQN model on Env
v2.0. It can be observed that in this more complex game
environment, the DQN model is taking a longer time to
converge and achieves a lower score than it does in Env v1.0.
Figure 9.b shows the heat map of the trained deep Q network.
We see that the network focuses more on the red regions where
enemy and player spaceships are located; the network focuses
less on the green regions where the bullets are more sparsely
distributed; the network totally ignores the blue regions, where
there is no objects at all. These results verify that our trained
deep Q network looks at the right places on the image.

C. Env v3.0

Figure 10 shows the performances of image-input DQN,
vector-input DQN, and pre-trained DQN on Env v3.0, the
most complicated environment. We observe that vector-input
DQN outperforms the image-input DQN, which makes sense
because the former takes much more accurate information of
the game state. The pre-trained DQN improves its score much
more quickly than other models. However, its scores soon
stabilize and stop increasing.

Page 6 of 8

Figure 8: a). Performance of DRQN on frame-skipping envi-
ronment b). Performance of DQN on frame-skipping environ-
ment

Figure 9: a). Performance of DQN on env v2.0. b). Heat map
of DQN

D. YOLO

Figure 11 shows the training curve of YOLO v3. It shows
that the loss, which quantifies the difference between predicted
and actual bounding boxes, is steadily decreasing.

VI. DISCUSSION

First, we tried to diagnose the causation of relative poor
performances of GA, PPO, and Dueling DDQN in Env v1.0.
We loaded each of these models and observed how AI behaves.
We discovered that they all share one common syndrome—AI
agents tended to move towards a corner and stay there for the
rest of a game (Figure 12.a). This happened because we set the
bouncing box of our pre-scripted enemies a few pixels away
along each side of the canvas; therefore, staying at a corner
guarantees AI agents to avoid 100% of the enemies’ bullets.
This is certainly a safe policy, but it also prevents the agents
from shooting the enemy either. As a result, the final score
will always stay around 0. We consider such a situation as a
local minimum, because it reached a stable yet sub-optimal
situation. One potential solution is to add another penalty if
the AI agent is too close to the side of the window to force it
to stay in the center.

We then loaded the models of DQN in Env v1.0, in which
agents were able to achieve closely full scores, and then,
observed the agents’ behavior. We found the agent to be
remarkably intelligent. More specifically, the agen were not
only able to follow the enemies but also able to predict their
movement and fire bullets ahead of time. In addition, the
agent could adjust their movement when bullets were close.
What’s more, the agent preferred to fire bullets consecutively
to maximize the chance of hitting the enemy (Figure 12.b).

Figure 10: a). Performance of image-input DQN. b). Perfor-
mance of vector-input DQN. c). Performance of DQN with
pre-training

Figure 11: Training curve of YOLO v3 on self-generated data
set

Lastly, the agent actively moved about the center part of the
window, rather than staying at the corner.

We also loaded the models of DRQN in Env v1.0 and
observed a similar behavior as DQN. However, the main
difference is that DRQN ran noticeably more smoothly than
DQN agent did. This is because while DQN took in four
stacked frames as inputs, DRQN only took only one frame at
each time step and could therefore process images at a higher
rate. In addition, DRQN also showed its superior resilience
to the frame-skipping issue. These results imply that under
certain hardware conditions, such as resource-limited edge
devices, we may want to switch to DRQN agents with less
resource requirement and more robustness in low-quality data
set.

In Env v2.0, we loaded the trained DQN model and
observed its behavior. We observed that even though the
consecutive shooting was disable, the agent was still capable
of adjusting its position and shooting at appropriate times. We
observed that when the enemies moved along the same direc-
tion, the agent could predict their movements and fire ahead
of their arrival. The corresponding heap map corroborates our
observation because the agent focused more on spaceships,
less on bullets, and not at all on empty objects. However, when
the enemies moved in opposition directions or went farther
apart, the agent became a little disoriented. We think that this
disorientation happened because the action values of chasing
either enemy are similar and weaken the agent’s decisiveness.

In Env v3.0, DQN-vector’s superior performance over

Page 7 of 8

vanilla DQN is expected, because the input vector can more
accurately and reliably capture all relevant information of a
state than CNN does. The pre-trained DQN showed a much
faster convergence speed at the initial stage of training, which
was expected because it had better-initialized model weights.
What is not expected is that the score quickly stops increasing
at some point; we think it is because of the low exploration
rate that caused the agent to form a fixed pattern and settle in
the local minimum point.

The YOLO training curve shows strong evidence of training.
As Figure 13 shows, the final model is extremely good at
detecting treasures but poor at detecting bullets. We think it
is due to (1) the inherent difficulty of YOLO to detect ultra-
small objects. We could add finer girding in YOLO to better
capture ultra-small objects (2) the insufficient training data.
While mainstream data sets, we only have 300 images as
training data. A larger training data set may be beneficial.

Figure 12: a). The screenshot of a GA agent playing the game.
b). The screenshot of a DQN agent playing the game

Figure 13: Trained YOLO v3 model labels an image

VII. CONCLUSION

Overhead-shooting games were chosen as the environment
for the application of machine learning. We built different

versions of the game (Env v1.0, Env v2.0, Env v3.0) with
increasing complexity. The backbone of the game is finished,
and it can be easily extended to include more features in future.

We explored several mainstream methods of machine learn-
ing to train our agents. GA, DQN, DDQN, PPO, YOLO and
other reinforcement learning methods have been tested on
different versions of our game. We found that DQN and DRQN
have better performance than other models in our environment,
while DRQN shows a much better resilience against the frame-
skipping issue than DQN does. We also found that feeding
the agent with properly processed vector of state information
achieves better performance than feeding only pixel inputs. We
observed both benefit and harm of using pre-training. Finally,
we trained a YOLO object detector that directly extracts state
information from images.

VIII. FUTURE WORK

Our future work includes:
1) Add more interesting features to the game.
2) Replace pre-scripted enemies with AI enemies.
3) Apply imitation learning in the more difficult environ-

ment.
4) Add multiple AI agents to train collaborations.

REFERENCES

[1] Gabriel V Cruz Jr, Yunshu Du, and Matthew E Taylor. Pre-training
neural networks with human demonstrations for deep reinforcement
learning. arXiv preprint arXiv:1709.04083, 2017.

[2] George Eason, Benjamin Noble, and Ian Naismith Sneddon. On certain
integrals of lipschitz-hankel type involving products of bessel functions.
Philosophical Transactions of the Royal Society of London. Series A,
Mathematical and Physical Sciences, 247(935):529–551, 1955.

[3] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 1440–1448, 2015.

[4] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for
partially observable mdps. In 2015 aaai fall symposium series, 2015.

[5] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In
Advances in neural information processing systems, pages 1008–1014,
2000.

[6] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing
atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

[7] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
779–788, 2016.

[8] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement.
arXiv preprint arXiv:1804.02767, 2018.

[9] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[10] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakr-
ishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual
explanations from deep networks via gradient-based localization. In
Proceedings of the IEEE international conference on computer vision,
pages 618–626, 2017.

[11] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement
learning with double q-learning. In Proceedings of the AAAI conference
on artificial intelligence, volume 30, 2016.

[12] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot,
and Nando Freitas. Dueling network architectures for deep reinforce-
ment learning. In International conference on machine learning, pages
1995–2003. PMLR, 2016.

Page 8 of 8

