
Engineering Design Document
AI Bot for Self-designed Overhead Shooter Game

Haoqin Deng
haoqinde@usc.edu

Haoyun Zhu
haoyunzhu@usc.edu

Haoming Hu
haomingh@usc.edu

Lihan Zhu
lihanzhu@usc.edu



2

TABLE OF CONTENTS

TABLE OF CONTENTS 2

1 INTRODUCTION 4
1.1 Overview 4
1.2 Goals 4
1.3 Related Research 5

2 DESIGN OVERVIEW 6
2.1 System Architecture 6

3 GAME ENVIRONMENT DESIGN 7
3.1 Environment Overview 7
3.2 Choosing the Right Tool 7
3.3 How PyGame + OpenAI Gym Works? 8
3.4 Building Up the Environment 10

3.4.1 PyGame Environment Setup 10
3.4.2 OpenAI Gym Environment Setup 12
3.4.3 Parameters Setup 13

3.5 Preprocessing 13
3.6 Environment Versions 14
3.7 Vector Input Variants 14

4 MODEL DESIGN 16
4.1 Model Overview 16
4.2 Genetic Algorithm 17

4.2.1 Implementation 17
4.3 DQN 19

4.3.1 Pseudocode 20
4.3.2 Implementation 20

4.4 DDQN 21
4.4.1 Implementation 21

4.5 Dueling DDQN 22
4.5.1 Implementation 22

4.6 DRQN 22
4.6.1 Implementation 22

4.7 Actor-Critic 22
4.7.1 Pseudocode 23
4.7.2 Implementation 23

4.8 PPO 24



3

4.8.1 Implementation 24
4.9 YOLOv3 25
4.10 Vision Transformer (ViT) 26

4.10.1 Implentmention 27

5 EVALUATION 29

6 RESULTS 30
6.1 Env v1.0 30
6.2 Env v2.0 33
6.3 Env v3.0 34
6.4 Discussion 34

7 TIMELINE 36
Phase 0 (Week 4) 36
Phase 1 (Week 5 - 6) 36
Phase 2 (Week 7 - 10) 36
Phase 3 (Week 11 - 14) 36

8 REFERENCES 37



4

1 INTRODUCTION

1.1 Overview
The game is a 2D overhead shooter game similar to those old-school Atari games. Players
can control their characters to fight against AI enemies. To win the game, players must
eliminate all enemies and stay alive. The idea of this game came from the combination of
MOBA and old-school video games. We would like the game to be simple enough for
initial training and we planned to add more complexity throughout the semester.

The game will then be used as a customizable environment to train our reinforcement
learning agents. We will compare the performance of a wide range of models on
different versions of the game. The game and the model will be designed and developed
together so that we can make changes based on model performances.

1.2 Goals
The main goals of this project are to:
1) Construct the custom environment:

Different versions bring flexibility. And we will be able to see models’ adaptation
to new elements in the game. Our custom game environment allows us to tweak it
in response to model performances. The RL agent can potentially help us find
bugs in the game.

2) Train our agent to play against an enemy or multiple enemies:
We will start by training RL agents against one enemy, and will increase the
number of enemies throughout the project. One advantage of this is that we can
apply pre-training techniques.

3) Compare the performance of different models and observe their behaviors:
For each of our models, we will train the agent by playing against pre-scripted
enemy(s). Using different models, we hope to find their strengths and weaknesses.
Along with training the agents, we expect to learn new strategies from our RL
agents.

Models are expected to have fluctuating scores on different versions of the game,
so we would like to find out what factors cause the fluctuations and why some
models perform better.



5

1.3 Related Research
Research was conducted to find out what environments and models were suitable for
our project. We decided to design our own environment and apply as many models as
possible.

Regarding the environment, we narrowed it down to an overhead shooter game. We
were inspired by OpenAI’s algorithms trained on Atari games. The overhead shooter was
similar to those games but different in terms of the gameplay. We expected to discover
new findings using such an environment.

When choosing models, we looked for RL models that had good performance in game
environments. Since we planned to try out as many different models as possible, we
chose DQN as our starting point and added future models such as Genetic Algorithm and
Actor-critic methods. From our research, we learned that many models were designed to
play games of different kinds, which is exactly what we wanted.



6

2 DESIGN OVERVIEW

Since all of the models require a standardized game environment to compare their
performances, the project can be splitted into two components:

1. The game environment: it provides an interface for different models to use
2. The models: they utilize the game environment to perform training

2.1 System Architecture
The development of game environments and models are separated but co-designed, as
shown in the diagram below. Multiple models can be using the same environment while
there can be multiple environments.

Each version of the game environment will have the same API. Thus, it can be plugged
into any models we choose. Having the same interface will allow us to compare the
performance of different models in the same environment.

In addition, each model will own a game environment instance and interact with it.
Regardless of the environment version, the model should be able to train and evaluate.

System Architecture



7

3 GAME ENVIRONMENT DESIGN

3.1 Environment Overview
Our environment is a 2D overhead shooter game wrapped in a ML interface. The player
of the game controls a spaceship to fight against two or more enemy spaceships. The
player and enemies can move in all directions at constant speed and fire bullets that do
constant damage to the opponents. When one enemy dies, a new one will be spawned at
a random position. If the player’s health drops below zero, the game will be over.

In different versions of the game environment, we added new elements such as
additional enemies, shields and treasures. But at the core of the environment, we kept
the same goals: the agent must hit enemies, dodge bullets and utilize game elements
wisely.

All  environment versions share the same ML interface, which inherits from OpenAI
Gym Env class. This will facilitate model training, as models can treat the environment as
the same.

3.2 Choosing the Right Tool
Prior to the project, multiple researches concerning different game development
environments were conducted. We had come down to 2 main options and their features
as following:

1) Pygame + Open AI Gym open code resources:
a) Direct, customizable interaction with Python. ✔
b) Similar syntax to SDL, easy to learn/use. ✔
c) Lightweight, small GPU usage. ✔
d) Basic game development tools with few integrated functions. ×
e) Less aesthetic graphic interface. ×

2) Unity + ML-agents:
a) Highly integrated game development tools. ✔
b) Delicate graphics quality. ✔
c) Indirect, less customizable interaction with Python. ×
d) Incompatible API with PyTorch baseline code for training. ×
e) Steep learning curve. ×
f) Taking up a lot of GPU memory, hindering training speed. ×

As the main purpose of this project being application of machine learning algorithms in
game AIs, instead of making a relatively nice-looking facet, we prioritize the



8

“intelligence” part of the game, digging into multiple algorithms and having them tested
and analyzed in various environments. As a result, we decided not to put much effort
into the actual gaming features, but to focus on the machine learning functionalities in
which the combination of Pygame and Open AI Gym would give us more freedom in
design.

3.3 How PyGame + OpenAI Gym Works?

The game will be built in Pygame, an open-source Python library for game development.
In terms of the coding logic, the most important and principal functionality of Pygame is
“Sprite” which essentially is the combination of a “game object” and an “image sprite”.

As shown in following diagram, a “pygame.sprite.Sprite” contains:
1) An image representing the object.
2) A “rect” variable storing the rectangular coordinates of the object. This is also

where position information is stored.
3) All other customized parameters.
4) Function to display the game canvas.
5) Function to detect collisions between rectangular boxes of itself and other

objects’.

Basic “sprite” Diagram:
pygame.sprite
| self.image: pygame.image
| self.rect: pygame.rect
| self.foo: customizable data type
| self.draw() -> None

#display on canvas
| self.collide_rect(sprite1: pygame.sprite, sprite2: pygame.sprite) -> bool

#can be called as a static function

Open AI Gym is currently a prevalent API standard for implementing machine learning
algorithms in a Pygame project. Simply by wrapping a pygame project inside a black box,
developers are provided access to tons of open-source machine learning codebase. As
long as the environment is configured accordingly, codes from variant resources can be
properly integrated and run without a flaw.

Basic Gym “Env” Diagram:
gym.env
| self.game_scene: customized data type

# a reference to the game project if needed
| self.observation_shape: Tuple

# defines the size of an observation



9

| self.observation_space: gym.spaces.Box
# defines a rudimental space of an observation

| self.action_space: gym.spaces.Discrete
# defines all actions that can be performed

| self.state: customized data type
# stores current state

| self.reward: customized data type
# stores a customized evaluation score of current state

| self.done: bool
# record status of the game

|self.info: dict
# stores any additional information if needed

| step() -> None
# takes an action and modifies self.state, self.reward,
#     self.done and self.info

| render() -> None
# displays the game canvas

| reset() -> None
# starts over

Basic Workflow of PyGame + Gym



10

3.4 Building Up the Environment

3.4.1 PyGame Environment Setup
The game scene is a human-playable Pygame class, which will feed inputs to the
ShooterEnv class.

GameScene
class GameScene:
Properties:

● self.screen: Pygame screen
● self.clock: Pygame clock to control the FPS
● self.player: Customized game objects as below classes

Methods:
● __init__(self):

○ Initializes Pygame display
○ Initializes player and enemy
○ self.Reset()

● Play()
○ Take an action and get feedback from GameScene

● ScreenShot()
○ Get a vectorized array of screen pixel

● update()
○ Update the GameScene according to current action

● draw()
○ Display the canvas

Spaceship
class Spaceship(pygame.sprite.Sprite):
Properties:

● self.health: current health
● self.start_health: starting health
● self.start_x: starting x position
● self.start_y: starting y position
● self.color: color of this spaceship (used to fill the image)
● self.up_direction: a boolean whether the spaceship is facing upwards
● self.bullets: a pygame.sprite.Group for all its bullets

Methods:
● __init__(self, image: pygame.Surface, screen_rect: pygame.Rect, start_health: int,

start_x: int, start_y: int, color: Tuple[int, int, int], up_direction: bool):
○ Initializes self.image and fill using color
○ Initializes self.rect.x and self.rect.y using x and y from arguments
○ Initializes other properties



11

● update(self, action: Action, others: List[pygame.sprite.Sprite]):
● fire(self):
● reset(self):
● is_dead(self) -> bool:

Bullet
class Bullet(pygame.sprite.Sprite):
Properties:

● self.vel_x: velocity in x direction
● self.vel_y: velocity in y direction
● self.screen_rect: the rect for the entire game screen

Methods:
● __init__(self, x: int, y: int, color: Tuple[int, int, int], vel_x: int, vel_y: int, screen_rect:

pygame.Rect):
○ Initializes self.image and fill using color
○ Initializes self.rect.x and self.rect.y using x and y from arguments
○ Initializes other properties

● update(self):
○ Updates x and y position using self.vel_x and self.vel_y
○ Checks if it goes off screen:

■ If it does, kill the bullet sprite

Treasure
class Treasure(pygame.sprite.Sprite):
Methods:

● __init__(self, image: pygame.Surface, x: int, y: int):
○ Initializes self.image and fill using color
○ Initializes self.rect.x and self.rect.y using x and y from arguments

Pre-scripted Enemy
The pre-scripted enemy is designed to facilitate the training of agents. The enemy will
constantly move from left edge to right edge and move backward in a loop. It will fire
randomly when possible. Its implementation contains a series of “if else” statements and
it performs random actions using a random number generator.



12

Workflow of the PyGame Environment

3.4.2 OpenAI Gym Environment Setup
To use our game environment as inputs to learning agents, it is necessary to wrap the
game in a gym.Env class.

class ShooterEnv(gym.Env):
Properties:

● self.game_scene: a GameScene class
● self.observation_shape: (WIDTH, HEIGHT, 3)
● self.observation_space: a screenshot of the game screen in RGB colors
● self.action_space: NOOP, LEFT, RIGHT, and FIRE
● self.state: a screenshot of the game screen in RGB colors
● self.reward: the current reward
● self.done: done status
● self.info: information

Methods:
● __init__(self):

○ Initializes everything and defines observation and action space
● step(self, action_num: int):

○ Performs the action
○ Returns done status, reward, and state from the game scene

● reset(self):



13

○ Resets game scene
○ Returns state

3.4.3 Parameters Setup
All tunable parameters are stored in one file for easy tuning. Some of the important ones
are:

● PURE_COLOR_DISPLAY = True
● NEGATIVE_REWARD_ENABLED = True
● NEGATIVE_REWARD = 0.005
● REWARD.BULLET_HIT_ENEMY = 10
● REWARD.BULLET_HIT_PLAYER = -10

3.5 Preprocessing
We defined some utility functions/classes that are used across different models. The
make_env function is used to preprocess raw frames from ShooterEnv.

Methods:
● def plot_learning_curve(x, scores, epsilons, filename, lines=None):

○ Plots stats using matplotlib
○ Saves the plot to a file

● def make_env(env_name, shape=(84,84,1), repeat=4, clip_rewards=False, no_ops=0,
fire_first=False):

○ Instantiates env using env_name
○ env = RepeatActionAndMaxFrame(...)
○ env = PreprocessFrame(...)
○ env = StackFrames(...)
○ Returns env

Classes:
class RepeatActionAndMaxFrame(gym.Wrapper):

● Wraps reset() and step() functions to repeat actions and only returns the max
frame

class PreprocessFrame(gym.ObservationWrapper):
● Wraps observation() function to resize the frame to customized shapes (the most

frequent one is 84 x 84

class StackFrames(gym.ObservationWrapper):
● Wraps reset() and observation() functions to stack 4 frames



14

3.6 Environment Versions
Below is a summary of the different game versions we have. Throughout our
development, the difficulty of the game gradually increases.

Version Action space Features

Env 1.0 {NOOP, LEFT, RIGHT, FIRE} Vanilla version

Env 2.0 {NOOP, LEFT, RIGHT, FIRE} Two enemies, consecutive shooting disabled

Env 3.0 {NOOP, LEFT, RIGHT, FIRE, UP,
DOWN}

Two enemies, treasures, consecutive
shooting disabled

Summary of environment versions

3.7 Vector Input Variants
For some of our models that require vector inputs, we built a customized environment
for them. The vector contains the position of all interactable elements in the game, as
shown in the diagram below.

We added the below methods for those variants.

GameScene:
Methods:

● StateVector(self, extra_padding: bool) -> np.ndarray:
○ Gets coordinates of player, enemies and bullets
○ Puts them into state_arr
○ Returns state_arr

ShooterEnv:
Enum:

● StateMode(Enum):
○ SCREENSHOT_MODE = 0
○ VECTOR_MODE_1 = 1
○ VECTOR_MODE_2 = 2



15

Methods:
● __init__(self, state_mode: StateMode = StateMode.SCREENSHOT_MODE):

○ self.state_mode = state_mode
○ ...
○ if self.state_mode == StateMode.SCREENSHOT_MODE:

■ Use screenshot as state
○ else:

■ Use vector as state
○ …

● step(self, action_num: int) / reset(self):
○ ...
○ if self.state_mode == StateMode.SCREENSHOT_MODE:

■ Use screenshot as state
○ else:

■ Use vector as state
○ ...



16

4 MODEL DESIGN

4.1 Model Overview
As we discussed in our design overview, different models use their own agents, but they
share the same main code and game environments. In the below diagram is the
workflow of different models and the interaction between environments and agents.

Different modules are used for different tasks. For feature extraction, models either use
convolutional neural networks or pre-trained YOLO object detection. An optional LSTM
layer can be plugged into any model to retrieve past information. Several identical dense
layers are used for decision making. And reward and loss are computed in a common
way. Some models also utilize pre-training for faster training speed and better
performances.

This kind of modular design allows us to quickly design new models and fix bugs in our
code. When we compare the performance of models, it is easy to interpret the results.

Model Architecture



17

4.2 Genetic Algorithm
GA simulates an evolution situation where 20 separate learning agents count as one
generation.  Within one generation, models from different agents are combined through
genetic processes such as mutation, crossover and inversion to form the next generation.
In current progress, RNN is used as a single learning agent.

Structure of RNN used in GA

4.2.1 Implementation

Individual
Individual is a class for each “creature” or learning agent. A customized RNN is used to
play the game and some genetic processes are included to perform evolution between
parents and offspring.

class Individual
# Properties:
| self.nn: NeuralNetwork

# stores a customized RNN class object
| self.fitness: float

# stores the score of the RNN, in GA’s terminology, fitness
| self.weight_biases: np.array

# Methods:
| self.__init__(input_size: int, hidden_size: int, output_size: int) -> None

# initialization of a single learning agent
| self.calculate_fitness(env: gym.env) -> None



18

# run a single episode of a game and get the feedback information
| self.update_model() -> None

# update RNN mode weights with current result and biases

# Abstract methods for future definition
| self.get_model(input_size: int, hidden_size: int, output_size: int) ->

NeuralNetwork
# method of getting a learning agent

| self.run_single(env: gym.env, episode: int, render: bool) -> Tuple[float, np.array]
#method for a single episode game simulation

# Static Functions:
| crossover(parent1_weights_biases: np.array, parent2_weights_biases: np.array, p: float)
-> Tuple[np.array, np.array]
| inversion(child_weights_biases: np.array) -> np.array
| mutation(parent_weights_biases: np.array, p: float, scale: int) -> np.array
| ranking_selection(population: List[Individual]) -> Tuple[Individual, Individual]
| roulette_wheel_selection(population: List[Individual])-> Individual
| statistics(population: List[Individual]) -> float, float, float

Genetic Crossover of a Vector Genetic Mutation of a Vector

Population
Population is a class for the “entire world” including 500 generations. It’s a
generalization class for the GA model.

class Population
# Properties:
| self.pop_size: int
| self.max_generation: int
| self.p_mutation: float

# probability of mutation



19

| self.p_crossover: float
# probability of crossover

| self.p_inversion: float
# probability of inversion

# Methods:
| self.__init__() -> None

# initialization of a generation
| self.run()-> None

# Run GA simulation until max generation is achieved.
# Inside each generation, 20 individuals are called one by one to start a

single game episode.

Basic Parameter
● RNN:

Input size: 84 * 84 * 3
Hidden layer1 size: 40
Hidden layer2 size: 12
Output size: 4

● GA:
Max iteration in one game: 2000
Population size: 20
Max generation size: 500
Mutation rate: 0.2 ~ 0.1
Crossover rate: 0.7 ~ 0.8
Inversion rate: 0

Further modification and tests are needed to find out the best and most
quickly-converging settings of the parameters.

4.3 DQN
DQN evolves from Q learning. Q learning keeps a Q table to evaluate the desirability of
each state/action pair. The Q table is updated using the temporal different method.
However, it is unscalable in large games because the number of states is too large, and
the Q table will be intractable. So, we replace the Q table with Q network for
generalization. Q network also updates itself by minimizing the loss function within the
framework of temporal difference (TD) algorithm.



20

4.3.1 Pseudocode

4.3.2 Implementation
class DeepQNetwork(nn.Module):
Properties:

● self.conv1, self.conv2, self.conv3: convolutional layers
● self.fc1, self.fc2: fully connected layers
● self.optimizer: RMSprop optimizer
● self.loss: MSE loss

Methods:
● forward(self, state):

○ Forwards the input state through each layer of the network
○ Returns action

class DQNAgent(object):
Properties:

● self.q_eval: a DeepQNetwork
● self.q_next: a DeepQNetwork
● self.memory: a replay buffer
● self.epsilon

Methods:
● choose_action(self, observation):

○ If np.random.random() > self.epsilon:
■ Chooses action using q_eval

○ else:
■ Chooses random action

○ Return action
● store_transition(self, state, action, reward, state_, done):



21

○ Stores transition in self.memory
● sample_memory(self):

○ Samples memory from self.memory
○ Return states, actions, rewards, states_, dones

● replace_target_network(self):
○ Copies eval network to target_network for every 1000 steps

● decrement_epsilon(self):
○ Decreases self.epsilon by fixed amount

Main:
● agent = DQNAgent(...)
● env = make_env(...)
● for i in range(n_games):

○ done = False
○ observation = env.reset()
○ score = 0
○ while not done:

■ action = agent.choose_action(observation)
■ observation_, reward, done, info = env.step(action)
■ agent.store_transition(observation, action, reward, observation_,

done)
■ agent.learn()
■ observation = observation_

○ Print out stats

4.4 DDQN
DQN uses the same Q network for both evaluation and selection, Such estimation creates
a maximum bias. Double DQN alleviates the problem by introducing a separate Q’ prime
network soly for action selection in the max operator. The weights of Q' are periodically
copied from Q.

4.4.1 Implementation
The only difference from DQN:

● Second Q’ network



22

4.5 Dueling DDQN
Dueling architecture takes this into account by designing an advantage function that𝐴

subtracts the state value from the action value . The DQN network is split𝑉π(𝑠) 𝑄π(𝑠,  𝑎)
into two streams to compute the action and the state value.

4.5.1 Implementation
The only difference from DQN:

● Uses an advantage function that subtracts the state value V(s) from the action
value Q(s, a) as the output of the q_eval and q_next networks

4.6 DRQN
The original DQN learning captures temporal information by having 4 consecutive
frames as inputs. DRQN has only one frame as input but can retain past information by
using an LSTM layer to replace the linear layer in the original DQN. And we are sampling
a sub-sequence from an episode.

4.6.1 Implementation
The only difference from DQN:

● One of the fully connected layer is replaced by an LSTM layer

4.7 Actor-Critic
Actor-critic algorithm is the combination of value-based and policy-based algorithms.
The model consists of two networks: an actor choosing action based on current game
state and a critic to calculate the Q value of the actor’s action. The learning of the actor is
using policy gradient while the learning of the critic is using temporal difference (TD).

The actor and the critic networks can share a large part of a neural network. Both of
them need several convolutional layers to extract features from the input images and
one or two fully connected layers. The only difference is the final output layer. The actor
network has an output size equal to the number of actions while the critic network has
an output size of one (Q value).

The loss of actor-critic networks has two parts as well. The first part is policy loss,
computed by policy gradient. And the second part is value loss, computed by temporal
difference (TD).



23

Actor-critic workflow

4.7.1 Pseudocode
In each training step:

1. Observe the state
2. Randomly sample action according to𝑎

𝑡
π(· |𝑠

𝑡
; θ

𝑡
)

3. Perform and observe new state and reward𝑎
𝑡

𝑠
𝑡+1

𝑟
𝑡

4. Update (in value network) using temporal difference (TD)ω
5. Update (in policy network) using policy gradientθ

4.7.2 Implementation
class ActorCriticNetwork(nn.Module):
Properties:

● A neural network with two output layers:
○ self.pi: output for actor network
○ self.v: output for critic network

Methods:
● forward(self, state):

○ Given a game state, return pi and v

class ActorCriticAgent:
Properties:

● self.actor_critic: an ActorCriticNetwork
● self.gamma
● self.lr: learning rate

Methods:



24

● choose_action(self, observation):
○ Forwards self.actor_critic network to get action probabilities
○ Randomly samples an action and return it

● learn(self, state, reward, state_, done):
○ Forwards self.actor_critic network to get critic value
○ Calculates actor and critic losses
○ (actor_loss + critic_loss).backward()
○ Steps optimizer

Main:
● agent = ActorCriticAgent(...)
● env = make_env(...)
● for i in range(n_games):

○ done = False
○ observation = env.reset()
○ score = 0
○ while not done:

■ action = agent.choose_action(observation)
■ observation_, reward, done, info = env.step(action)
■ score += reward
■ agent.learn(observation, reward, observation_, done)
■ observation = observation_

4.8 PPO
Proximal Policy Optimization, one of popular reinforcement learning models in recent
years, is an improvement of the policy gradient descent algorithm.

PPO also uses actor-critic agents, but the difference is that it combines the idea of TRPO.
It uses clipped surrogate objectives to penalize large policy updates.

4.8.1 Implementation
class Policy(nn.Module):
Properties:

● self.base: CNN base
● self.dist: distribution of size num_outputs to decide action

Methods:
● act(self, inputs):

○ Gets value and actor_feature from CNN
○ Returns return value, action, action_log_probs

● get_value(self, inputs):
○ Returns value from CNN



25

● evaluate_actions(self, inputs, action):
○ Returns value, action_log_probs from CNN

class A2C_ACKTR:
Properties:

● self.actor_critic: a Policy network
● self.optimizer: optimizer

Methods:
● update(self, rollouts):

○ self.actor_critic.evaluate_actions(rollout buffer data)
○ Calculates value and policy loss
○ loss.backward()
○ self.optimizer.step()

Main:
● actor_critic = Policy(...)
● agent = A2C_ACKTR(actor_critic, ...)
● env = make_env(...)
● for j in range(num_updates):

○ for step in range(args.num_steps):
■ obs, reward, done, infos = envs.step(action)
■ Puts input to rollout buffer
■ next_value = actor_critic.get_value(...)
■ Determines reward based on action
■ agent.update(rollouts)

4.9 YOLOv3
YOLO (You Only Look Once) is an object detection algorithm that can efficiently extract
object positions from image inputs. To  date,  there  are  five  versions  of  YOLO, of which
version 3 (YOLOv3) is used in this paper.

In YOLOv3,  images  first  go  through  deep  convolutional layers  for  feature extraction.
Then, the  outputs  are  divided  into three  different  sizes  of  grids  to  accommodate
size  variation of objects. To stabilize initial stages of training, anchor boxes are
pre-computed  with  k-means  clustering  methods.

Object positions  are  represented  by  vectors  of  normalized  relative positions  between
bounding  boxes  and  anchor  boxes.  The difference  between  the  predicted  object
positions  and  the ground truths is computed as the loss function and iteratively
minimized.



26

Project Architecture

As shown in the chart above, YOLO is used in our project mainly for pre-processing
screenshots of states. For its promising performance in object detection, we are able to
split our task into two goals. First, extract position information from a pixel image.
Second, inject position information of a state into different reinforcement learning
agents to retrieve a proper decision that hits the highest score.

With YOLO, we can handle the goals separately and the best part of it is that a decently
pre-trained YOLO model is an once-for-all solution to convert a complicated screenshot
of thousands of pixels into a vectorized representation of a state featuring a huge
decrement of entropy.

4.10 Vision Transformer (ViT)
Vision Transformer, presented by Google, is a vision model based closely on the Transformer
architecture originally for some NLP tasks. When trained with sufficient data, Vision
Transformer outperforms state-of-art CNN with fewer computational computational
resources which shows broad prospects in many common vision tasks such as image
classification, image classification, object detection. In our project, We also explored applying
the Vision Transformer model into our game.
Compared with the previous model, Vision Transformer is used to extract features from
the input images and construct feature vector space instead of two conventional layers.



27

What’s more, We combined Vision Transformer and DQN and trained this end-to-end
model. The output of this new model will be the next action of the agent in our game.

4.10.1 Implentmention

Vision Transformer Workflow

This picture shows the workflow of Vision Transformer in our model. First，We load the
input pictures and then split them into several patches. Second, We input these patches
into the embedding layer. Then the output embedding vectors will be input into the
Vision Transformer units. Finally, we obtain the result from the transformer blocks and
then use the result to predict actions. The whole pipeline can be viewed as an end-to-end
model in the image classification task.

Input Size Layer name hyper-parameter Output Size

[64*4*84*84] PatchEmbedding in_channels: int = 4,
patch_size: int = 4,
emb_size: int = 64,
img_size: int = 84

[64*442*64]

[64*442*64] MultiHeadAttention emb_size: int = 64,
num_heads: int = 8,
dropout: float = 0

[64*442*64]

[64*442*64] Multilayer
Perceptron

emb_size: int=64
expansion: int = 4,
drop_p: float = 0.

[64*442*64]



28

[64*28288] Fully Connected
Layer

in_features: 28288,
out_features: 512

[512*1]

[512*1] Fully Connected
Layer

in_features: 512,
action space size

[action space
size*1]

Table: Network Structure Description

The above table gives detailed information about the implementation of our model. We
use the Pytorch framework to build our model. Because our game is self-designed which
means it is difficult to find a suitable pre-trained transformer model to fit our game
scene. So we trained our model from the very beginning.



29

5 EVALUATION

1. Scores: we evaluate the model by summation of agent's reward scores.

2. The convergence speed of training the model.



30

6 RESULTS

6.1 Env v1.0
6.1.1 Genetic Algorithm

Results of Genetic Algorithm

The plots above show the performance of Genetic Algorithms. We see that
after significant score increase in the first 200 generations, the model ceases to
improve and oscillates at around 50 points. Note that the full score is 100 points.



31

6.1.2 DQN, DDQN, Dueling DQN

Plots of DQN (a.), DDQN (b.), Dueling DDQN (c.) and DRQN (d.)

The plots above show the perfor-mances of the DQN model and its variants,
DDQN, Dueling DDQN,  DRQN.  We  see  that  the  DQN  and  DRQN  agent  is able
to  achieve  close  to  full  score,  100  points.  DDQN  also approaches full score but
oscillates more. Dueling DDQN does not converge.



32

The Training Curve of PPO

The plots above show  the  performances  of  the  PPO  model.  It strongly
oscillates  around  0  scores  and  does  not  display  a strong learning behavior
beyond this point.

6.1.3 LSTM Frame-skipping

Performance of DRQN (a.) and DQN (b.) on Frame-skipping Environment



33

The plots above show  DQN  and  DRQN  in a frame-skipping environment.
It  can be  observed  that  the  DQN  model  collapsed  due  to  the  loss of
information.  On  the  other  hand,  the  DRQN  model  only experiences a slight
drop in scores. This experiment confirmed our  hypothesis  that  the  usage  of
LSTM  layers  can  indeed preserve  past  information  and  is  more  resilient  to
loss  of frames.

6.2 Env v2.0

Performance of DQN in Env 2.0 (a.) and the Heatmap the Trained Network
(b.)

As shown in plot (a,), in this more complex game  environment,  the  DQN
model  is  taking  longer  time  to converge and achieves a lower score than it does
in Env v1.0. Graph (b.) shows the heat map of the trained deep Q network. We see
that the network focuses more on the red regions where enemy and player
spaceships are located; the network focuses less on the green regions where the
bullets are more sparsely distributed; the network totally ignores the blue regions,
where there are no objects at all. These results verify that our train deep Q
network looks at the right places on the image.



34

6.3 Env v3.0

Performance of DQpixel-input  DQN, vector-input DQN, and pre-trained DQN on
Env v3.0

From the plots above, we observe that vector-input DQN outperforms
pixel-input DQN, which makes sense because the former takes much more
accurate information about the game state. The pre-trained DQN increases its
score much faster than other models, which shows the merit of pre-training.
However, its scores soon stabilize and stop increasing. This is most likely due to
the low exploration rate that causes the model to have less diverse experiences
and converge into local minimums.

6.4 Discussion

We  first  diagnosed  the  causes  of  the  relative  poor  performances  of  GA,  PPO,  and
Dueling  DDQN  in  Env  v1.0.  We loaded  each  of  these  models  and  observed  how  AI
behaves. We discovered that they all share one common syndrome—AI
agents like to move to the corner and stay there forever.  This  happens because  our
pre-scripted  enemy  is  always a  few  pixels  away  from  the  side  of  the  window;
therefore, staying  at  the  corner  can  help  AI  avoid  the  enemy’s  bullets. This is
certainly a safe policy, but it also makes it impossible for AI to shoot the enemy either,
and the total score will always stay  at  around  0.  We  consider  such  a  situation  as  the
local minimum, because it is a stable yet sub-optimal situation. One potential cure is to
add another penalty if the AI agent is too close to the side of the window to force it to stay
in the center.



35

We then loaded the models of DQN in Env v1.0, which can achieve close to full scores,
and observe the agent’s behavior. We  find  the  agent  to  be  remarkably  intelligent.
The  agent  is not only able to follow the enemy but also able to predict its movement and
fire bullets ahead of time. In addition, the agent can adjust its movement when bullets
are close. What’s more, the agent prefers to fire bullets consecutively to maximize the
chance  of  hitting  the  enemy.  Lastly,  the  agent actively  moves  in  the  center  part  of
the  window,  rather  than staying at the corner.

We  also  loaded  the  models  of  DRQN  in  Env  v1.0  and observed a similar behavior as
DQN. However, one difference is  that  DRQN  runs  considerably  more  smoothly  than
DQN agent does. This is because while DQN takes in four stacked frames  as  inputs,
DRQN  only  takes  only  one  frame  at  each time  step  and  can  therefore  process
images  much  faster.  In addition, DRQN also shows a superior resilience to the frame-
skipping issue. These results imply that under certain hardware conditions,  such  as
resource-limited  edge  devices,  we  may want to switch to the DRQN agent that is less
resource-hungry and more immune to low-quality inputs.

In  Env  v2.0,  we  loaded  the  trained  DQN  model  and  observed its behavior. We
observed that even though the consecutive shooting is disable, the agent is still capable of
adjusting its position and shooting at appropriate times. We observed that when  the
enemies  move  along  the  same  direction,  the  agent still can predict their movements
and fire ahead of their arrival. The  corresponding  heap  map  corroborates  our
observation because  the  agent  focuses  more  on  spaceships,  less  on  bullets, and not
at all on empty objects. However, when the enemies move  in  opposition  directions  or
are  farther  apart,  the  agent becomes a little disoriented. We think that this
disorientation happens because the action values of chasing either enemy is similar and
weakens the agent’s decisiveness.

In   Env   v3.0,   DQN-vector’s   superior   performance   over vanilla  DQN  is  expected,
because  the  input  vector  can  more accurately  and  reliably  capture  all  relevant
information  of  a state  than  CNN  does.  The  pre-trained  DQN  shows  a  much faster
convergence speed at the initial stage of training, which is expected because it has
better-initialized model weights. It is not expected that the score quickly stops increasing
at some point;  we  think  it  is  because  of  the  low  exploration  rate  that causes the
agent to form a fixed pattern and settle in the local minimum point.

The YOLO training curve shows strong evidence of training. The  final  model  is
extremely  good  at  detecting  treasures  but poor at detecting bullets. We think it is due
to (1) the inherent difficulty of YOLO to detect ultra-small objects. We could add
additional, finer girding in YOLO to better capture ultra-small objects  (2)  the
insufficient  training  data.  While  mainstream data sets, we only have 300 images as
training data. A larger training data set may be beneficial.



36

7 TIMELINE

Phase 0 (Week 4)
● Construct game environment using PyGame

Phase 1 (Week 5 - 6)
● Train 1 AI player against 1 pre-scripted enemy
● DQN

Phase 2 (Week 7 - 10)
● Train 1 AI player against multiple pre-scripted enemies
● DQN + LSTM + Actor-critic + PPO

Phase 3 (Week 11 - 14)
● Train multiple AI player against multiple pre-scripted enemies
● Extend from 1 player model to include teammates’ observation space



37

8 REFERENCES

Papers:
D. H. Ackley, “A Connectionist Machine for Genetic Hillclimbing,” Kluwer Academic
Publishers, Dordrecht, 1987

Y. Davidor, “A naturally occurring niche and species phenomenon: the model and first results. In
Proceedings of the Fourth International Conference on Genetic Algorithms” Morgan Kaufmann,
1991

V. Mnih et al., "Playing Atari with Deep Reinforcement Learning", arXiv.org, 2013. [Online].
Available: https://arxiv.org/abs/1312.5602. [Accessed: 20- Oct- 2021].

M. Hausknecht and P. Stone, "Deep Recurrent Q-Learning for Partially Observable MDPs",
arXiv.org, 2015. [Online]. Available: https://arxiv.org/abs/1507.06527. [Accessed: 20- Oct-
2021].

H. van Hasselt, A. Guez and D. Silver, "Deep Reinforcement Learning with Double Q-learning",
arXiv.org, 2015. [Online]. Available: https://arxiv.org/abs/1509.06461. [Accessed: 20- Oct-
2021].

Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot and N. de Freitas, "Dueling Network
Architectures for Deep Reinforcement Learning", arXiv.org, 2015. [Online]. Available:
https://arxiv.org/abs/1511.06581. [Accessed: 20- Oct- 2021].

Konda, Vijay R., and John N. Tsitsiklis. "Actor-critic algorithms." Advances in neural
information processing systems. 2000.

Schulman, John, et al. "Proximal policy optimization algorithms." arXiv preprint
arXiv:1707.06347 2017.

Bellemare M G, Naddaf Y, Veness J, et al. The arcade learning environment: An evaluation
platform for general agents[J]. Journal of Artificial Intelligence Research, 2013, 47: 253-279.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 779–788, 2016.

Websites:



38

PyGame Documentation: https://www.pygame.org/docs/

OpenAI Gym Genetic Algorithm Tutorial:
https://becominghuman.ai/genetic-algorithm-for-reinforcement-learning-a38a5612c4dc

PPO: https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail

https://inst.eecs.berkeley.edu/~cs188/sp20/assets/files/SuttonBartoIPRLBook2ndEd.pdf

https://www.pygame.org/docs/
https://becominghuman.ai/genetic-algorithm-for-reinforcement-learning-a38a5612c4dc

